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ESTIMATION FOR A SIMPLE EXPONENTIAL MODEL 

Richard G .  Cornell, Ph.D. 

and 

Janace A .  Speckman, M.S. 

There are many s i tua t ior i s  of i n t e r e s t  i n  publ ic  hea l th  where an estimate 

i s  required f o r  t h e  parameter p i n  t h e  model 

. (1) - P t  Y = l - e  

I n  t h i s  s i t u a t i o n  Y represents  t h e  expected value of a proport ion y ca l cu la t ed  

from a count of t h e  number of "reactions"among n independent observat ions and 

t is  a v a r i a b l e  such as t i m e  o r  dosage. 

This  model has been appl ied t o  histoplasm s e n s i t i v i t y  conversion rates 

by Manos17 where 

t o  his toplasm at t i m e  t i n  years after t h e  i n i t i a l  conversions take  place.  It 

i s  assumed t h a t  ny,the number of pos i t i ve  r e a c t o r s  out  of n people t e s t e d  a t  

t i m e  t ,  has a binomial d i s t r i b u t i o n  with mean nY. Then p is in t e rp re t ed  as t h e  

instantaneous annual conversion rate. Manos developed a weighted least squares 

method of es t imat ing  p by c a l c u l a t i n g  a s t r a i g h t  l i n e  r e l a t ionsh ip  between 

(-logey) and t. 

and has  been discussed by several other  authors.  

i n  h i s  paper Y i s  the  t h e o r e t i c a l  proport ion of p o s i t i v e  reactors 

1 2  
This  es t imat ion  procedure was a l s o  s tudied  earlier by Fisher  

i a  
Peto" has discussed another s i t u a t i o n  where the model I s  a~pl iza51c.  

Here Y is t h e  propor t iona l  of t e s t  animals which would not  be expected t o  

su rv ive  a f t e r  adminis t ra t ion  of a dose of t micro-organisms. The ac tua l  

number who f a i l  t o  survive,  ny, i s  assumed t o  have a binomial d i s t r i b u t i o n .  

P e t 0  developed an iterative maximum l ikel ihood est imat ion procedure f o r  t h i s  
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model and presented tahles to facilitate calculations. Finney8” considered 

the same bioassay model as Peto and developed slightly different iterative 

calculation schemes for maximum likelihood estimation. Johnson and Brown 

and Fisher’’ considered a similar situation except that they specified the 

15 

dosages to be those which would be used in a serial dilution biological assay. 
the 

Both/johnson and Brown and the Fisher papers present estimation procedures for 

such assaysI 

Another example is an experiment in genetics performed by Edington, 

Epler and Regan’l to study the frequency-dose relation of X-ray induced 

Y-suppressed lethals in drosophila. The model was fitted to data on orthodox 

lethals where y is the proportion of orthodox lethals found at a dose of 

t roentgens of X-rays. For a given dosage it is again reasonable to assume 

that ny has a binomial distribution, where n is the number of chromosomes 

tested. In radiation genetics and virology the model (1) is called the 

one-particle or one-hit curve. The derivation of the model in these contexts 

was discussed more fully by Cochran. 4 

These examples illustrate a variety of situations in which the simple 

exponential model is encountered. The inportance of this model in epid- 

emiology was discussed more fully by Muench18, who also gave a nomogram which 

can be used in estimating p . Pluench called the model (1) the simple catalytic 
curve. He points out that this model will arise whenever the change in Y 

for a small change in t is proportional to Y. The proportionality constant 

or rate of change is p . 
The references discussed above also indicate that a variety of methods 
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are being used to estimate the parameter p in (1). 

these methods will be presented, illustrated and compared in order to guide 

the public health or medical investigator who encounters this model in his 

research. In the examples cited it is reasonable to assume that ny, the 

observed count, has a binomial distribution for each value of t. All of the methods 

discussed in this paper may be applied under this assumption although some of 

them do not require this assumption and one involves a different assumption. 

In this paper several of 

METHODS OF ESTIMATION 

Graphical. 

values in the graphical method of estimating p. A straight line is drawn 

through the origin by eye to describe the graphical relationship. 

of this line is an estimate r of p. 

Maximum Likelihood. 

Values of u = [-loge(l-y)] are plotted against the corresponding t 

The slope 

g 

A s  mentioned earlier, Pete" has derived the maximum lilte- 
lihood estimator of p for the situation where ny has a binomial distribution 

for each value of t. Consider k samples of size n takenatvarious values of i 

t i = 1,2, ... k. The binomial probability at t is Y = l-exp(-pti). Let y i' i i 
be the proportion of the n at time t exhibiting the characteristic of interest. 

Using this notation, the equation for the maximum likelihood estimator r 
i i 

of 
ma 

i; become8 

where x = t r 

of equation (2) utilizing Newton's method, where in his notation ni(l-yi) = ri. 

Tables A and B of Peto's article aid in an iterative solution i i ma* 
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a l s o  presented t a b l e s  t o  a i d  i n  c a l c u l a t i n g  r using a d i f f e r e n t  
m a  

F inney 

i t e r a t i v e  ca l cu la t ion  scheme which i s  pa t te rned  a f t e r  t h a t  usua l ly  used i n  

p rob i t  ana lys i s  f o r  a similar but d i f f e r e n t  bioassay model. I n  h i s  book 

Finney 10 b r i e f l y  reviewed severa l  papers on maximum l ike l ihood es t imat ion  f o r  

t h i s  "d i lu t ion  se r i e s "  model. 

Least Squares. The l e a s t  squares es t imat ion procedure gives  a method f o r  

c a l c u l a t i n g  t h e  s lope of a s t r a i g h t  l i n e  through the  o r i g i n  r e l a t i n g  

u = [-loge(l-y)] and t i n  such a way t h a t  t he  sum of squares of devia t ions  of 

t h e  u ' s  about t h e  l i n e  i s  minimized. The s lope of t h i s  l i n e  i s  the  l e a s t  squares 

es t imate  r 

t h e  [- loge(l-y)]  values about t he  f i t t e d  l i n e .  

mum l ike l ihood procedure when the  log ( l -y)  values have a normal d i s t r i b u t i o n  

wi th  homogeneous var iance.  

of p. It .involves the  assumption of homogeneity of var iance of 
a s  

This procedure i s  a l s o  a maxi- 

e 

The formula f o r  the  es t imator  i s  

A 

2 r =  
a s  c ti 

i 

(3 )  

Weighted Least Squares. I f  the  assumption of homogeneity of variance of t he  

u va lues  which is inherent  is using l e a s t  squares es t imat ion i s  not tenable ,  

then a poss ib l e  a l t e r n a t i v e  i s  the  use of weighted l e a s t  squares ca l cu la t ions  

as suggested by Manos17. I f  w e  def ine r t o  be the  weighted least squares 
w a s  

e s t ima to r  of p, then 
-c w.t .loge(l-Yi) 

1 1  i - - 
2 r 

w a s  c W i t i  
i 

( 4 )  
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Each weight w 

cjf t he  corresponding u var iab le .  

approximating u 

involves t h e  assumption t h a t  each ny va r i ab le  f o r  a p a r t i c u l a r  value of t has 

i s  chosen t o  be inversely propor t iona l  t o  the est imated var iance i 

This estimated var iance i s  obtained through i 

by the  f i r s t  two terms of a Taylor series expansion and it i 

a binomial d i s t r i b u t i o n ,  It a l s o  involves approximating E(y) by y f o r  each 

value of t used. The weights a r e  given by w = ni(l-yi)/yi .  Subs t i t u t ion  of 

these  weights i n  (4) y i e l d s  

i 

1 I f  a given y = 0 o r  1 i t  is  common p r a c t i c e  ( f o r  example, see  Berkson ) i 

t o  rep lace  it by 1/2n or (1-l/Zn), respec t ive ly ,  i n  order  not t o  become in-  

volved wi th  an indeterminate r e s u l t  i n  (5). Another procedure has been pro- 

posed by FisherrZ f o r  avoiding t h i s  d i f f i c u l t y  by using t h e  d a t a  only t o  

obta in  an i n i t i a l  es t imate  i n  an i t e r a t i v e  procedure. This i s  discussed by 

Cornf ie ld  who also suggested the  p o s s i b i l i t y  of applying weighted least 6 

squares  ca l cu la t ions  t o  the  (1-y) proportions in s t ead  of t o  t h e i r  logarithms. 

I n  some ins tances  it i s  poss ib le  t o  replace indeterminate terms i n  (4) by 

t h e  appropr ia te  l i m i t  a s  y approaches e i t h e r  0 or 1. 
i 

P a r t i a l  Tota ls .  

Speckman and Cornell”, c o n s i s t s  of equat ing C(1-y.) t o  i t s  expected value 

C(l-Yi) = C e 
i i 

The method of par t ia l  t o t a l s ,  which has been discussed by 

1 
- P t i  . If the  t values  a r e  equal ly  spaced, t h a t  i s ,  ti+l-ti = d, 
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then, l e t t i n g  v = exp(-r d),  t h e  est imat ion equation i s  
P t  

k 

i=l 
f ( v )  = v k+tl/d - + (1-v) c ( b y i )  = 0. 

If tl  = 0, t h i s  s impl i f i e s  t o  

lc 

i=l 

k f (v)  = v + (1-v) c (l-yi)  - 1 = 0. (7) 

Ei the r  equation (6) o r  (7)  may be solved f o r  v by Newton’s i t e r a t i v e  procedure 

and then r = (-logev)/d. Al te rna t ive ly ,  when t = 0, t a b l e s  given by Speclcman 

and Cornell” may be en tered  f o r  values of S = C ( l -yi) /k  and k t o  ob ta in  t h e  

value of r d such t h a t  r s a t i s f i e s  ( 7 ) .  I f  tl = d estimates r d may a l s o  

be obtained by en te r ing  t h e  t a b l e s  with 5 + 1 and k + 1. Tables of es t imates  

P t  - k1 

i=l 

Pt P t  P t  

are presented f o r  k = 5,G,G,10,15,20 and 25. 

values  of k can sometimes be obtained by in t e rpo la t ion .  

Par t ia l  t o t a l s  es t imates  f o r  o the r  

Moments. 

r of the parameter p i n  (1). 

Muench18 has presented t h e  method of moments f o r  computing an es t imate  

He computed the  area under a histogram drawn 
k 

m 

from t h e  da t a  as CA = C y d where each d i s  t h e  width of t he  i n t e r v a l  on 
k i  i i=l 

t h e  t scale f o r  which the  corresponding y.  proport ion is ca lcu la ted .  

assumed t h a t  the  range of t values,  f o r  which the  histogram wi th  a rea  ZA i s  

drawn, i f  from 0 t o  T. 

Muench 
1 

He approximated El by the  i n t e g r a l  

1; Y d t  = /: (l-e’Pt) d t  = T + ( e  -pt - l ) / p  . 
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1 = - ;I loge fdl r 

He equated ZA t o  t h i s  i n t e g r a l  i n  order t o  solve f o r  h i s  es t imate  r of p. 

The est imat ion equation, a f t e r  dividing both CA and t h e  i n t e g r a l  by T 

m 

is 
J 

i=l 

2 k- 1 

-r T 
ZA/T = 1 + (e m - l)/rmT 

Muench's book18 contains  a nomogram which gives  values of 

I r = r ~ / 1 0 0  m m (9) 

f o r  var ious values  of 

F i n i t e  Differences.  The model (1) can be generated by the  d i f fe rence  equation 

where it i s  assumed as f o r  the  p a r t i a l  t o t a l s  method t h a t  the t values  are 

equal ly  spaced a t  i n t e r v a l s  of width d. Lipton and McGilchrist have given 

i 
16 

two methods of es t imat ing  p i n  (11). One i s  t o  choose exp(-pd) t o  minimize 

k-1 

i=l 
C D. where D. i s  obtained from the  l e f t  s ide  of QU by replacing t h e  Y 

1 1 

expec ta t ions  by the  corresponding y proportions ca lcu la ted  from t h e  data .  

This leads t o  an est imator  r of p which can be ca lcu la ted  from t h e  formula f d l  
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The o ther  f i n i t e  d i f f e rences  method c o n s i s t s  of minimizing 

of p given by 2 k-1 j 

j=1 i-1 f d2 C ( C D . )  which y i e l d s  the  est imate  r 
1 

1 
3 - ;T log, fd2 r 

where 

j -1 
s = c ( b y i )  . 
j i=l 

.- 

1 -  

L 

k 

i 
S.(y.-Y1) 

c s 2  

j =2 J J  
k 

j =2 j 

14 The es t imator  given by equation (13) is  similar t o  t h a t  given by Hartley under 

t h e  heading of i n t e r n a l  least squares.  

F isher .  

E(yi) =: 1-exp (-pa 

Fisher'' presented another procedure f o r  t h e  model 

-(i-1) C ), i = 1,2, ..., k, f o r  constant  a .  Let t ing  a = e , 
we can regard h i s  procedure a s  an est imat ion procedure f o r  (1) with the  t 

va lues  spaced exponent ia l ly ,  t h a t  is, wi th  t = e f o r  equal ly  spaced X 

XIS ,  - a~ < x < a  . It i s  assumed t h a t  E(y) near ly  ranges from 0 t o  1. 

F i she r  s e t  

1 i=l i=l 

13 
and solved f o r  an estimate r 

book g ives  t a b l e s  f o r  a = 2, 4, and 10 which l i s t  values  of a quan t i ty  K f o r  

var ious  p a i r s  of values of  C y and k. I n  t h e i r  no ta t ion  C yi = x and k = s. 

of p by a numerical procedure. F isher  and Yates' 
f 

IC k 

i=l i i=l 
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Then t h e  equation 

IC 

f '  may be solved t o  obtain r 

Fisher  and Yates' t a b l e s  may be used even i f  t he  t values  used are not 
provided t h a t  ti/t = a. i+l equal t o  a f o r  i = 1 , 2  ,..., k and a = 2, 4, o r  1 0 /  The procedure is 

exac t ly  t h e  same as t h a t  given above except t h a t  equation (16) y i e l d s  

Spearman. Like t h e  Fisher  procedure, t h e  Spearman method presented by Johnson 

and Brown15 may be used f o r  the  model (1) when t h e  t values used are such 

X 5 f o r  equal ly  spaced values of x wi th  i n t e r v a l s  of width c.  Cornel1 t h a t  t = e 

has shown t h a t  t h e  Spearman estimator may be derived by replacing t h e  r i g h t  

s i d e  of equation (15) by a i n t e g r a l  approximation under t h e  assumption t h a t  

lc i s  l a r g e  and c is correspondingly small. The r e s u l t a n t  Spearman est imator  

r of p is given by 
S 

k 
r S = exp(c Yi - "k - c / 2  - y )  

i=l 

where t h e  range from x t o  \ i s  assumed t o  be g rea t  enough so t h a t  y 1 1 = 0 

ILLUSTRATIONS 

Two sets of da t a  are used t o  i l l u s t r a t e  t he  various methods discussed 

above. The f i r s t  set of da t a  has equally spaced t ' s ,  t h e  second has 
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exponent ia l ly  spaced t ' s .  

squares, weighted l e a s t  squares and moment es t imat ion  procedures do not  

r equ i r e  any s p e c i f i c  spacing of the  t ' s ,  they w i l l  be i l l u s t r a t e d  i n  both 

examples. 

will be i l l u s t r a t e d  only ir, Example 1. 

r equ i r ing  exponential  spacing, w i l l  be i l l u s t r a t e d  only i n  Example 2. 

Example 1. Equally spaced t ' s .  

S ince  t h e  graphical ,  maximum l ike l ihood,  least 

P a r t i a l  t o t a l s  and f i n i t e  d i f fe rences ,  which requi re  equal spacing, 

The Fisher  and Spearman es t imators ,  

The da ta  f o r  t h i s  example come from a gene t ics  experiment discussed 

7 by Edington, E p l e r  and Regan . The purpose of t h e  experiment w a s  t o  e s t a b l i s h  

a dose response r e l a t i o n  of X-ray induced Y-suppressed l e t h a l s  i n  drosophi la .  

Five doses of X-rays, shown i n  column (1) of Table 1, were administered t o  

n chromosomes as shown i n  column (2) and t h e  numbers of orthodox and Y-suppzessed 

l e t h a l s  were counted. The number of orthodox l e t h a l s  observed a r e  shown i n  

column (3) wi th  the  corresponding proportions,  y, given i n  column (4). 

model (1) and t h e  assumption t h a t  ny is binomially d i s t r ibu ted ,  w e  would 

expect t h a t  y = 0 when t = 0. 

occurance of l e t h a l s  of about 0.02 percent, the  da t a  are cor rec ted  f o r  t h i s  

discrepancy. 

of t h e  corresponding e n t r i e s  i n  column (3) t o  those  i n  column (2) and sub- 

tract  i n g  0.0002. 

FJith 

Since t h i s  i s  not t he  case,  due t o  t h e  n a t u r a l  

Thus t h e  y values  i n  column (4) are computed by taking the ratios 

The e igh t  estimates ca lcu la ted  f o r  t h i s  example a re  l i s t e d  i n  Table 4. 

Graphical  Method. 

p l o t t e d  aga ins t  t as i n  Figure 1. 

eye t o  relate u and t, i s  I: = 0.0000305. 

Columns (5) and (1) of Table 2 enable u = -loge(l-y) t o  be 

The s lope  of t h i s  l i n e ,  which w a s  f i t t e d  by 

g 
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Maximum Likelihood. 

of nyA and nyB f o r  each t value during each i t e r a t i o n .  He  gave t a b l e s  of 

Peto 's  i t e r a t i v e  ca l cu la t ions  involve t h e  computing 

A and B corresponding t o  var ious  t r i a l  values  of x 

h i s  i n s t r u c t i o n s  and using columns ( 3 )  and (4) of Table 2 as wel l  as r 

i n i t i a l  estimate, one cyc le  of ca lcu la t ions  y i e l d s  r 

= t r 
i i m a  . By following 

as an 
g 

= 0.00003048. 
mk? 

Table 1 - Data f o r  Example 1 

Dose Chromosomes Orthodox 

t Tested,  n Lethals  Y 

(1) ( 2 )  ( 3 )  ( 4 )  

0 4358 

1082 3352 

2164 3605 

3246 2313 

4328 2206 

1 0.0000 

111 0.0286 

232 0.0642 

259 0.0919 

292 0.1322 
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Figure 1 - Graph of u = -log (1-y) against  t with the line e 

f i t t e d  by eye for Example 1 

.14 

06 

.04 

,02 

. 00 
0 1082 2164 3246 4328 t 
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Table 2 - Calcula t ions  for  Example 1 Leading t o  r.. r and r 

g, as'rwas, mk? 

wtu 
2 w =  

n t  ny -We(1-Y) t 2 t u  n( l -y) /y  w t  x 1 0 - ~  
u =  

t 1-Y 

(1) (2) (3) (4) (5) ( 6) (7) (8) (9) (10) 

0 1.0000 0 0 0  0 0 O* 0" 
1082 0.9714 4,167,864 110 0.0290 1,170,724 31.3780 130,839 153,177 4,105,472 
2164 0.9358 7,801,220 231 0.OGG3 4,682,896 143.4732 52,555 246,110 7,540,233 

3246 0.9081 9,130,998 259 0.0364 10,536,516 312.9144 27,791 292,822 2,696,244 

4328 0.8678 9,547,568 292 0.1418 18,731,584 613.7104 14,478 271,197 3,885,330 

TOTAL 4,6331 30,647,650 35,121,584 1101.4760 963,306 29,227,279 

* 
L'Hospi ta l ' s  r u l e  shows t h a t  t h e  co r rec t  value f o r  these  terms is zero i n  the  

l i m i t  as y approaches zero. 

Least Squares. The t o t a l s  f o r  columns (6) and (7) i n  Table 2, when s u b s t i t u t e d  

i n  equat ion (3), give r = 0,00003136. 

Weighted Least Squares. Column (8) in  Table 2 gives the  weights needed for 

RS 

these ca l cu la t ions .  Reference t o  formula (4) shows t h a t  r i s  t h e  r a t i o  of 

t h e  t o t a l s  of columns (10) and (9),  t ha t  is ,  r = 0.00003034. 
was 

w a s  

P a r t i a l  Tota l s .  The range of i from 1 t o  5 i n  Table 3 shows t h a t  k = 5 and - > 
C ( l -yi)  = 4.6831 so t h a t  s = (4.6831)/5 = 0.9366. 

i=l 
the t o t a l  f o r  column (4) gives 

Speckman and Corne l l ' sZ0  t a b l e s  of r 

S = 0.93 and 0.94. Linear i n t e rpo la t ion  y i e l d s  r d = 0.0333 and r = 0.00003078 

s i n c e  d = 1082, Al te rna t ive ly ,  r could have been determined by so lv ing  equa t ios  

(7) i t e r a t i v e l y .  

d values have e n t r i e s  f o r  k = 5 and 
Pt - 

P t  P t  

P t  
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Method of Moments. To ca l cu la t e  r 

between two consecutive dosages i s  coilstant and equal t o  1082. 

t value as t h e  midpoint of an in t e rva l  f o r  t he  histogram, we have d 

f o r  a l l  i, and T = tk + d/2 = 4328 + 1082/2 = 4869. 

we f i r s t  observe t h a t  t h e  d i f fe rence  
m' 

Taking each 

= 1032 i 

Thus, 

5 5 
Si = Yidi (1082) C yi = 342.8858, 

i=l i=l 

using t h e  t o t a l  f o r  column (3) of Table 3. From equation (10)' 

CIA = (100) ZA/T = (100) (342.8858) / (4869) = 7.0422. 

Enter ing Chart I i n  Appendix A of Muench's book18 with t h i s  value of C'A, 

w e  obta in  r1 = 0.0015. This leads t o  
m 

1: = (100) r i / T  = (100)(0.0015)/(4869) = 0.0000308 m 

from equat ion (9).  

F i n i t e  Differences Method 1. 

of Table 3 along with d = 1082 i n t o  equation (12) y i e lds  

Subs t i t u t ing  t h e  t o t a l s  of columns (5) and (6) 

3*5182 ) = 0.00003245 . 1 = -  
f d l  (1082) loge(3. 6439 r 

F i n i t e  Differences Method 2. 

(10) i n t o  equation (13) y i e l d s  

Subs t i tu t ion  of t h e  t o t a l s  of columns (8) and 

0*9268 ) = 0.00003123 . 1 
(1082) loge(' - 27.8947 

= -  
fd2 r 
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pt’rm’rfd17 and ‘fd2 Table  3 - Calcu1atioi:s for Example 1 Leading t o  r 

1 0 0.0000 1.0000 1.0000 0.9714 

2 1062 0.0286 0.9714 0.9436 0.9090 1.0000 1.0000 0.0286 0.0286 

3 2164 0.0642 0.9358 0.3757 0.8498 1.9714 3.8864 0.0642 0.1266 

4 3246 0.0919 0.9081 0.3246 0,. 7880 2.9072 8.4518 0.0919 0.2672 

5 4328 0.1322 0.8678 3.8153 14.5565 0.1322 0.5044 

TOTAL 0.3169 4.6831 3.6439 3.5182 27.8947 0.9268 

Table  4 - E s t i m a t e s  of p Computed by Several  D i f f e r e n t  Methods for Example 1 

Maximum Leas t  P a r t i a l  F i n i t e  F i n i t e  
Likel ihood Squares 

We i gh t e d 
Least  

Squares 
Moments T o t a l s  Di f fe rences  Di f f e r -  

Method 1 ences 

Met hod 

Meth. 2 

E s t i m a t e  305 304.3 313.6 303.4 307.8 308 324.5 312.3 

Example 2. Exponent ia l ly  spaced  t ’ s. 
f i  

For t h i s  example we use d a t a  obta ined  by Cirstea and Suhaciu3 i n  s t u d i e s  

concerned wi th  t h e  pass ive  s e n s i t i z a t i o n  of guinea-pigs.  Table 5 g ives  their 

d a t a  on t h e  m o r t a l i t y  rates of guinea-pigs s e n s i t i z e d  pass ive ly  wi th  i n t r a p e r i -  

t o n e a l  r a b b i t  anti-ovalbumin serum and chal lenged 24 hours l a te r  wi th  i n t r a c a r d i a l  



antigen. Each r a t e  i s  based on t en  animals. 

The values f o r  the seven est imates  ca lcu la ted  f o r  t h i s  example a r e  

displayed i n  Table 6 .  The ca lcu la t ions  f o r  r r r and r are not 

shown s ince  they were done i n  the  same manner as f o r  Example 1 except t h a t  
g' ma'  as w a s  

= 0 w a s  replaced by 1/2n = 0.05 i n  computing the  denominator of r as 
y5 w a s  
given by equation (5) s ince  t h i s  denominator approaches i n f i n i t y  as any 

y approaches zero.  The term i n  the numerator fo r  i = 5 w a s  replaced by i t s  

l i m i t  as y approaches zero, which i s  n t  = 0.125. This i s  e s s e n t i a l l y  the  same 

as the  procedure followed i n  ca l cu la t ing  r 

ins tance  the  smallest t value was zero. 

fo r  Example 1 except i n  t h a t  w a s  

Method of Moments. 

1 except f o r  t h e  d iv is ion  of t he  range of t i n t o  i n t e r v a l s .  

The ca l cu la t ion  of t h i s  es t imate  i s  the  same as i n  Example 

I n  t h i s  ca lcu la-  

t i o n ,  equal i n t e r v a l s  on t h e  log t sca le  were used. That is ,  

= a n t i l o g  [log ti  + ( log  2) /2]  - an t i log  [ log t - (log 2) /2]  and di i 

T = a n t i l o g  llog0.2 + (log 2)/21 = 0.283 . 
Fisher .  To apply t h i s  procedure, w e  note t h a t  t . / t  1 i+l = 2, i=1,2,3,4. However, 

t l  = 0.2 ins tead  of 1. 

t r = (0.2)rf . 
Fisher  and Yates ' l3  Table VI11 2 w i t h  a = 2 (Two-fold), we f i nd  K = 0.358. 

S u b s t i t u t i o n  i n  equation (16) y i e l d s  0.395 which f o r  t h i s  example equals  

Therefore, t h i s  method wi th  a = 2 gives  a so lu t ion  f o r  

I n  F i she r ' s  notat ion s = lc = 5 and x = Cy = 2.5. Enter ing I f  

Solving f o r  r gives r = 12.4 as l i s t e d  i n  Table 6. loglo (0.2)rf  f f 

Spearman. From Table 5 we see t h a t  t h e  l a rges t  t value i s  0.2 which i s  t . 
The corresponding % = log  t 

and Euler ' s  constant  = y  = 0.57722. 

1: 

= -1.60944. Also, c = log  (t i / t i+l)  = log, 2 = 0.69315 e k  e 

Subs t i t u t ion  of these  q u a n t i t i e s  i n  equation 

(17) y i e l d s  t h e  value of 11.2 which is given f o r  r i n  Table 6. 
S 
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Table 5 - Data for Example 2 

Dose of Antiserum ( m l )  Mortality Rate Survival Rate 

t Y 1 - Y  

(1) (2) (3) 

0.2 

0.1 

0.05 

0.025 

0.0125 

0.9 

0.8 

0.7 

0.1 

0 

0.1 
0.2 

0.3 

0.9 
1.0 

2.5 

Table 6 - Estimates of p Computed by Several Different Methods for Example 2 

Weighted Maximum Least Least Moments Fisher Spearman Likelihood Squares Squares 
i 

Method i Graphical 

Estimate 1 13.5 12.9 12.8 9.2 7.1 12.4 11.2 
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DISCUSSIONS AND COMPARISONS 

- Ease f Computation. The examples inves t iga ted  i n  t h i s  las t  s ec t ion  he lp  

compare some of t he  c h a r a c t e r i s t i c s  of t he  es t imat ion  procedures described i n  

t h i s  paper. 

regard t o  t h e  computation of es t imates  i s  given i n  Table 7 .  

i n  Table 7, t h e  graphica l  procedure is s i m p l e  and easy t o  c a r r y  out .  

q u i r e s  no assumption concerning t h e  spacing of t h e  t values  provided a t  least 

two d i f f e r e n t  t values  a re  used o r  concerning t h e  d i s t r i b u t i o n  of the  devia- 

t i o n s  of t h e  da t a  about t he  model of expectat ions given by (1).  However, the 

g raph ica l  method depends on t h e  judgment of t h e  person drawing the  l i n e  t o  

descr ibe  t h e  da ta .  

v a r i a b i l i t y  i n  the  es t imates  determined by t h i s  method is  impossible t o  assess.. 

The graphica l  method o r d i n a r i l y  i s  used only t o  ob ta in  a preliminary parameter 

e s t ima te  which i s  subsequently ref ined,  perhaps using an i t e r a t i v e  computa- 

t i o n a l  procedure. The unweighted and weighted l e a s t  squares  methods 

as w e l l  as t h e  moment, Spearman a n d - f i n i t e  d i f f e rences  procedures a re  r e l a t i v e l y  

simple computationally s ince  they do not involve i t e r a t i v e  ca l cu la t ions .  

pa r t i a l  t o t a l s  and F i s h e r  methods r e q u i r e  extensive ca l cu la t ion  i f  the  es t i -  

mation formulas are evaluated e n t i r e l y  wi th  computations, but ,  as mentioned 

earlier,  t a b l e s  are avni lsihle whirh-~l?ak-e such c = l s u l a t i m s  :zrizcess.ary I n  

many ins t ances  and make these  est imat ion procedures t h e  e a s i e s t  t o  apply i n  

t h e s e  ins tances .  For the  maximum l ikel ihood method, t h e  t a b l e s  given by P e t 0  

and Finney only a s s i s t  i n ,  but do not e l iminate ,  i t e r a t i v e  ca l cu la t ions  and 

Also, a summary of t h e  procedures considered i n  t h i s  paper  w i th  

A s  i s  ind ica ted  

It re-  

It usua l ly  leads  t o  a lack  of r ep roduc ib i l i t y  and t h e  

The 
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t he re fo re  t h i s  method remains one of t h e  more d i f f i c u l t  computationally.  

D i s t r ibu t ion  and Sampling Spec i f i ca t ions ,  Large Sample Proper t ies .  As pre- 

sen ted  i n  t h i s  pape r ,  only the  maximum l ike l ihood and weighted least squares 

methods take  i n t o  account v a r i a b i l i t y  i n  the  n values.  The o t h e r s  would 

not be p re fe r r ed  i f  the  n were very d i f f e r e n t  from each o ther .  However, 

some of them performed wel l  on Example 1 where n i s  near ly  twice as l a rge  

as n5. 

a l s o  t h e  only ones which make e x p l i c i t  use of t h e  assumption of a binomial 

d i s t r i b u t i o n  of t he  ny va r i ab le  f o r  each t value. The o ther  es t imat ion methods 

only use the  func t iona l  form of the  expected value of y as given by the  model 

i n  equat ion (1). The m a x i m u m  l ikel ihood,  l e a s t  squares, weighted l e a s t  squares 

and moment procedures share with the  graphica l  method the  advantage of being 

app l i cab le  r ega rd le s s  of t he  spacing of t h e  t values while t he  p a r t i a l  totals ,  

F i she r  and Spearman methods r equ i r e  p a r t i c u l a r  spacings of the  t values .  Like 

t h e  p a r t i a l  t o t a l s  method, 'the two f i n i t e  d i f fe rences  methods r equ i r e  equal ly  

spaced t values.  These two methods w i l l  not  be discussed f u r t h e r  because no 

attempt has  been made t o  evaluate  them f o r  the  model under considerat ion.  

i 

i 

1 

The maximum l ike l ihood and weighted l e a s t  squares procedures are 

The eva lua t ion  of t he  l e a s t  squares and weighted least squares  procedures 

i s  d i f f i c u l t  because of t he  necess i ty  of rep lac ing  y by an a r b i t r a r y  approxima- 

t i o n  when y = 0 or 1; making the properties usually associated wfth least 

squares  procedures i n  doubt. Moreover, i n  order  f o r  t h e  unweighted least 

squares  method t o  y i e l d  an es t imator  wi th  minimum variance,  t he  va r i ab le s  

u 

t i o n  t h a t  i s  not f u l f i l l e d ,  f o r  instance,  under the  binomial model proposed 

= [- loge(l-yi)]  would have t o  have the  same variance f o r  a l l  i, an assump- i 
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Table 7 - Summary of Ten Procedures with regard t o  t h e  Computation of Estimates 

I Method 

Graphical ( 8 )  

Maximum 
I Likelihood (ma) 

Least 
Squares ( i s )  

Weighted Least 
Squares (was )  

P a r t i a l  
To ta l s  ( p t )  

Moments (m) 

F i n i t e  
Differences 
Method 1 ( f d l )  

F i n i t e  
Differences 
Method 2 (fd2) 

Fishe r  ( f )  

Spearman (s) 

.est r i c  t ions  
n Spacing 
f t Values 

Equal 

Equal 
Prefer red  

Equal 

Equal 

Exponent i a 1 

Exponent i a  1 

R e s t r i c t  ions 
on Approximate 
Range of y 

0 t o  1 

0 t o  1 

list r ibu t  ion 
issumptions f o r  
I e r iva t  ion of 
5 st imat i on 
Ile t hods 

Binomial 

Zonst an t  var i- 
mce of log  y 

Binomial 

3ase of 
:omputat i on  

Very easy 

Di f f i cu l t  , 
i t e r a t i v e  

Easy, 
d i r e c t  

Easy , 
d i r e c t  

Easy with 
t a b l e s  

Easy wi th  
nomogram 

Easy, 
d i r e c t  

Easy, 
d i r e c t  

Easy wi th  
t a b l e s  

Easy, 
d i r e c t  

Computational 
Aids 

Tables used 
i n  i t e r a t i o n s  

E s t  i m a t  e s 
tab led ,  
t = 0,d 

Nomogram f o r  
e st i m a t  e s 

1 

K t ab led  for 
a = 2,4,10 
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earlier for maximum likelihood estimation. Even the weighted least squares 

method does not necessarily lead to a minimum variance estimator under this 

model because the appropriate weights are not necessarily known exactly but 

are estimated from the data and because of the problems when y = 0 or 1. 

However, when the sample size n 

Yi 
mately normally distributed. In fact, the weighted least squares estimator 

for each i is large enough so that no i 
= 0 or 1, under our model the weighted least squares estimator is approxi- 

is consistent and asymptotically efficient with a variance approximated by 

k CI 

1/ C w tL when each ni is sufficiently large. i i  i=l 

Large sample results are also known for several of the other methods. 

The maximum likelihood estimator is consistent and asymptotically efficient 

and normally distributed provided that for given t 

become large as the total sample size becomes large for given t . Pet0 
gives a procedure for estimating the asymptotic variance of the maximum 

likelihood estimator. The situation where Muench's method of moments is most 

likely to be used, especially for large samples, is when t values are equally 

spaced and E(y) comes close to ranging from 0 to 1. In this instance, Cornel1 

has shown that Muench's method of moments and the partial totals methods are 

equivalent when observations are taken for a large number of t values, that 

is, for k large. 

estimator, r 

whether or not k is large. 

of r 

at least two of the ni 

i 

i 
19 

i 
5 

Moreover, Speckman and Cornel12'showed that the partial totals 

is approximately normally distributed for large sample sizes 
Pt' 

They give an expression for the asymptotic variance 

is consistent but not asymptotically efficient. and they show that r 
Pt Pt 
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It has also been shown by Cornel15 that Fisher and Spearman estimators are 

equivalent for k large. Fisher", and Johnson and Brown15, gave a formula for 

the asymptotic variance of these estimators which are consistent and asymptoti- 

cally normally distributed. These procedures have an asymptotic relative 

efficiency of 88 per cent. In deriving these large sample properties independent 

sampling at different t values and finite variances of the y variables were 

assumed. The large sample results derived for the Spearman and Fisher procedures 

also require addition of the assumption that for any given t value, the correspond- 

ing y variable is binomially distributed. 

Small Sample Properties. 

but can be very misleading for small samples. 

The large sample properties just reviewed are useful 

This is particularly true for 

the least squares and weighted least squares procedures since the large sample 
Therefore, to better evaluate these methods, 

conclusions require a large sample for each t value for these methods./it is 

necessary to examine the results of Monte Carlo studies. 

Speckman and Cornel1 compared the least squares, weighted least squares, maxi- 

In their study, 
20 

mum likelihood and partial totals methods for the model discussed in this paper 

with t values a constant interval of width d apart for the following parameter 

comb ina t ions : 

pd = 0.30; k = 5 ;  n = 5,10,15,25, 

k = 10; n = 5,lO 

k = 15; n = 5,25, 

pd = 0.15; k = 10; n = 10, 

pd = 0.10; k = 15; n = 5,25. 

They included the assumption that ny has a binomial distribution for each value 
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of t i n  t h e i r  model. 

l e s s  biased than the  maximum l ikel ihood es t imator ,  p a r t i c u l a r l y  f o r  small n and 

IC. 

considerably more biased.  

procedures, an adjustment of 1/2n w a s  made only when the  indeterminate form of 

concern had no l i m i t  as y approached the appropr ia te  end-point. 

ex is ted ,  it w a s  used. 

equals  t h e  var iance p lus  the  square of the b ias ,  f o r  pd = 0.30 t h e  p a r t i a l  t o t a l s  

estimator w a s  superior  f o r  lc = 5 and e i t h e r  t h e  l e a s t  squares or  p a r t i a l  t o t a l s  

method was super ior  f o r  k = 10 and 15. For pd = 0.15 and 0.10, f o r  which only 

IC values  of 10 and 15 were s tudied,  t h e  maximum l ike l ihood est imator  w a s  more 

e f f i c i e n t .  

t he  o t h e r  methods i n  most cases  and never had the  highest  e f f ic iency .  

comparison of t h e  maximum l ike l ihood and pa r t i a l  t o t a l s  es t imators ,  it w a s  found 

They found t h a t  t h e  p a r t i a l  t o t a l s  es t imator  is  s l i g h t l y  

The least squares and e spec ia l ly  the weighted least squares e s t ima to r s  are 

I n  t h e i r  study f o r  y = 0 and 1 i n  the  two least squares  

I f  such a l i m i t  

I n  comparing the  methods on r e l a t i v e  e f f i c i ency ,  which 

The weighted least squares es t imator  had low e f f i c i ency  re la t ive t o  

I n  a 

t h a t  they  performed very s imi la r ly ,  although the  p a r t i a l  t o t a l s  es t imator  had 

s l i g h t l y  higher e f f i c i ency  f o r  t h e  small sample s i z e s  while the opposi te  w a s  

t r u e  f o r  the  l a r g e r  sample s i z e s  s tudied empir ical ly .  

also made t h a t  asymptotic var iances  be mul t ip l i ed  by 1.5 when used t o  estimat 

A recommendation w a s  

var iances  for s m a l l  samples. Fur ther  work has shown t h a t  f o r  some s i t u a t i o n s  

t h i s  f a c t o r  may be too  s m a l l .  

Comparable evidence on the  proper t ies  of t he  o ther  es t imators  f o r  small 

samples is not  ava i lab le .  

mation f o r  t h e  Spearman es t imator  which can be used t o  obta in  a less biased 

e s t ima to r .  

However, Johnson and Brown15 presented a b i a s  approxi- 

2 
Also, i n  s t u d i e s  summarized by Brown, Spearman est imat ion has been 
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found t o  have high e f f i c i ency  r e l a t i v e  t o  maximum l ike l ihood f o r  small samples 

f o r  models d i f f e r e n t  but  similar t o  the one considered here.  However, s ince  

the  Spearman method involves approximating a sum used by Fisher  under t h e  

assumption t h a t  k is  large,  t h e  Fisher  method would seem p re fe rab le  f o r  small 

samples. 

would be prefer red  t o  Muench's method of mements s ince  Cornell' has shown t h a t  

S imi la r ly ,  t he  method of p a r t i a l  t o t a l s  f o r  equal ly  spaced t values  

they are r e l a t e d  i n  the  same way as the Fisher  and Spearman methods i n  t h i s  

ins tance .  When the  t values  are not equally spaced the  i n t e g r a l  used by Muench 

i s  t h e  same as t h a t  when they a r e  equal ly  spaced, so h i s  method of moments would 

appear inappropr ia te  then. I n  p a r t i c u l a r ,  i f  t he  t values  are exponent ia l ly  

spaced, t he  Spearman method, which i s  similar t o  the  Muench method except t h a t  

it i s  e x p l i c i t l y  devised f o r  exponential  spacing in s t ead  of equal  spacing, would 

be more appropriate .  

The examples given earlier i l l u s t r a t e  severa l  p rope r t i e s  discussed. 

I n  Table 4, t he  es t imates  computed by seve ra l  methods f o r  Example 1 are given. 

The e s t ima te  computed by t he  f i r s t  f i n i t e  d i f fe rences  method i s  much l a rge r /  

while  t hose  computed by least squares and the  second f i n i t e  / 

than t h e  o t h e r s  

d i f f e rences  method 
are c lose  to -  

ge ther  and r e l a t i v e l y  l a rge ,  The other  estimates are c l o s e  together  wi th  t h e  

weighted least squares estimate being the  smallest. This supports  t he  evidence 

given above t h a t  least squares es t imators  f o r  t he  model being s tud ied ,  whether 

unweighted o r  weighted, are biased more than maximum l ike l ihood and pa r t i a l  

to ta ls  es t imators .  The pa r t i a l  t o t a l s  and moment methods, which are similar 

f o r  equa l ly  spaced t values  as used in  this  example, give e s s e n t i a l l y  t h e  

same answer. The es t imates  given f o r  t h e  second example, which has exponent ia l  
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spacing of t values, in Table 6 are similar except the estimates computed 

by the weighted least squares and moments methods are small relative to the 

others. 

is illustrated here as is the inappropriateness of Muench's method of moments 

when the t values are not equally spaced. 

no indication of the sampling variability of the various estimators. 

Unsatisfactory performance of weighted least squares for small samples 

These two examples, of course, give 

SUMMARY AND CONCLUSIONS 

Several methods of estimating the parameter in a simple exponential 

model, which often arises in epidemiological studies and biological assay, are 

presented, illustrated and compared. The method of maximum likelihood, which 

can be used for any spacing of doses, is known to have very desirable large 

sample properties and behaved quite well in the limited Monte Carlo study. 

The simple method of partial totals is suggested as a possible alternative to 

maximum likelihood for small samples for equally spaced doses. The Fisher and 

Spearman methods, which are also computationally easy, are suggested as alter- 

native methods regardless of the sample size for exponentially spaced dosages, 

that is, for dosages whose logarithms are equally spaced. 
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